首页> 外文OA文献 >Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations
【2h】

Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations

机译:酶和生物分子运动中的变构活化转变:原子和粗粒度模拟的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In \u22simple\u22 enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for \u22cracking\u22 in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.
机译:酶中的化学步骤通常之前是动力学上独特的活化步骤,该步骤涉及大规模构象转变。在简单的酶中,该步骤对应于活性位点的封闭;在更复杂的酶(例如生物分子马达)中,激活步骤更为复杂,可能涉及与其他生物分子的相互作用。这些激活转变对于酶的功能是必不可少的,并且这些转变的规模和/或速率的扰动与各种严重的人类疾病有关。将关键的灵活性整合到工程酶中,也被认为是合理酶设计中的主要挑战。因此,重要的是要了解这些过渡的潜在机制。由于此类转换的变构和多尺度性质,这对实验研究和计算研究都是重大挑战。使用我们对两种酶系统(肌球蛋白和腺苷酸激酶(AK))的最新研究,我们讨论了如何使用原子模拟和粗粒度模拟来提供有关现实系统中激活转变机制的见解。总体而言,结果表明,尽管许多变构过渡都可以看作是由柔性铰链介导的结构域位移,但存在其他复杂性和各种偏差。例如,尽管我们的研究没有发现AK破裂的任何证据,但我们的结果确实强调了域内特性(例如,二面体柔性)对过渡速率的贡献。对肌球蛋白的机械化学偶联的研究强调,对化学重要的局部变化需要更广泛的结构变化来稳定。从这个意义上讲,需要更多的整体结构转变来激活活性位点中的化学物质。这些讨论进一步强调了更好地理解控制变构过渡协同作用程度的因素的重要性,再次暗示了蛋白质稳定性和功能灵活性之间的紧密联系。最后,简要讨论了许多将来很有兴趣的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号